CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT BASED MCQ OF CHAPTER -02)

GANESH KUMAR

DATE: 05/05/2021

Solution

1. The molality of pure water is;

(a) 55.5 (b) 50.5 (c) 18 (d) 60.5

Explanation:

(a) Molality = Number of moles/kg of solvent

$$= \frac{\frac{1000}{18}}{\text{kg of solvent}} = 55.5 \text{ moles/kg}$$

2. The number of moles of NaCl in 3 litres of 3M solution is

(a) 1	(b) 3	(c) 9	(d) 27
-------	-------	-------	--------

Explanation:

(c) 3M solution means 3 moles in 1 litre.

∴ 9 moles in 3 litres

3. 4L of 0.02 M aqueous solution of NaCl was diluted by adding one litre of water. The molality of the resultant solution is ______.

(a) 0.004	(b) 0.008	(c) 0.012	(d) 0.016
-----------	-----------	-----------	-----------

Explanation:

- (d) $M_1V_1 = M_2V_2$ $0.02 \times 4 = M_2 \times (4 + 1)$ $\Rightarrow M_2 = \frac{0.08}{5} = 0.016$
- 4. Low concentration of oxygen in the blood and tissues of people living at high altitude is due to
 - (a) low temperature

(b) low atmospheric pressure

- (c) high atmospheric pressure
- (d) both low temperature and high atmospheric pressure

Explanation:

(b) Low atmospheric pressure will lead to low concentration of oxygen blood.

- 5. Considering the formation, breaking and strength of hydrogen bond, predict which of the following mixtures will show a positive deviation from Raoult's law?
 - (a) Methanol and acetone.
- (b) Chloroform and acetone.
- (c) Nitric acid and water.
- (d) Phenol and aniline.

Explanation:

(a) CH₃OH and acetone, on mixing force of attraction will decrease.

- 6. Which of the following aqueous solutions should have the highest boiling point?
 - (a) 1.0 M NaOH (b

(c) 1.0 M NH₄NO₃

(b) 1.0 M Na₂SO₄

(d) 1.0 M KNO3

Explaination:

(b) Because i = 3, $\Delta T_{b} \propto i$, Boiling point $\propto \Delta T_{b}$.

7. In comparison to a 0.01 M solution of glucose, the depression in freezing point of a 0.01 M MgCl2 solution is about ______.

(a) the same (b) twice (c)three times (d) six times

Explaination:

(c) It will be nearly 3 times because number of particles in MgCl₂ \rightarrow Mg²⁺ + 2Cl⁻ are thrice than glucose.

8. An unripe mango placed in a concentrated salt solution to prepare pickle, shrivels because ______.

(a) it gains water due to osmosis.

(b) it loses water due to reverse osmosis.

- (c) it gains water due to reverse osmosis.
- (d) it loses water due to osmosis.

Explaination:

(d) Concentrated salt solution is hypertonic solution, therefore, fluids inside mango will come out and it shrivels.

9. Which of the following statements is false?

- (a) Two different solutions of sucrose of same molality prepared in different solvents will have the same depression in freezing point.
- (b) The osmotic pressure of a solution is given by the equation π = CRT (where C is the molarity of the solution).
- (c) Decreasing order of osmotic pressure for 0.01 M aqueous solutions of barium chloride, potassium chloride, acetic acid and sucrose is BaCl₂ > KCl > CH₃COOH > sucrose.
- (d) According to Raoult's law, the vapour pressure exerted by a volatile component of a solution is directly proportional to its mole fraction in the solution.

Explaination:

- (a) is false because ΔT_f will depend upon nature of solvent and their K_f.
- 10. The value of Henry's constant K_H is _
 - (a) greater for gases with higher solubility.
 - (b) greater for gases with lower solubility.
 - (c) constant for all gases.
 - (d) not related to the solubility of gases.

Explaination:

(b) Higher the value of K_H , lower will be solubility.

11. Consider the figure and mark the correct option.

- (a) water will move from side (A) to side (B) if a pressure lower than osmotic pressure is applied on piston (B).
- (b) water will move from side (B) to side (A) if a pressure greater than osmotic , pressure is applied on piston (B).
- (c) water will move from side (B) to side (A) if a pressure equal to osmotic pressure is applied on piston (B).
- (d) water will move from side (A) to side (B) if pressure equal to osmotic pressure is applied on piston (A).

Explaination:

- (b) Reverse osmosis will take place.
- 12. We have three aqueous solutions of NaCl labelled as 'A', 'B' and 'C' with concentrations 0.1*M*, 0.01*M* and 0.001*M*, respectively. The value of Van't Hoff factor for these solutions will be in the order ______.

(a) $i_A < i_B < i_C$ (b) $i_A > i_B > i_C$ (c) $i_A = i_B = i_C$ (d) $i_A < i_B > i_C$

Explaination:

(c) Van't Hoff factor (i) does not depend upon concentration.

13. A solution containing 10 g per dm³ of urea (molar mass 60 g mol⁻¹) is isotonic with 5% solution of non-volatile solute, M_B of solute is

(a) 300 g mol⁻¹ (b) 350 g mol⁻¹ (c) 200 g mol⁻¹ (d) 250 g mol⁻¹

Explaination:

(a) $\frac{1}{60} = \frac{5}{x}$

 \Rightarrow x = 300 g mol⁻¹ 1000 cm³ contains 10 g 100 cm³ contains 1 g, i.e., 1%.

14. Cone. H₂SO₄ is 98 % H₂SO₄ by mass has d = 1.84 g cm⁻³. Volume of acid required to make one litre of 0.1 M H₂SO₄ is

(a) 5.55 ml (b) 10 ml (c) 20 ml (d) 30 ml Explaination:

(a) $M = \frac{98 \times 10 \times 1.84}{98} = 18.4 \text{ M}$ $\boxed{M_1 V_1 = M_2 V_2}$ $18.4 \times V_1 = 0.1 \times 1000$ $V_1 = 5.55 \text{ mL}$

15. What is mole fraction of solute in 1.00 m aqueous solution?
 (a) 0.0354 (b) 0.0177 (c) 0.177 (d) 1.770

Explaination:

(b)
$$x_B = \frac{m}{m + \frac{1000}{M_A}} = \frac{1}{1 + \frac{1000}{18}}$$

= $\frac{18}{1018} = 0.0177$

16. When 1 mole of benzene is mixed with 1 mole of toluene

(vapour pressure of benzene - 12.8 kPa, Toluene = 3.85 kPa)

(a) The vapour will contain equal amount of benzene and toluene.

(b) Not enough information is given for prediction.

(c) The vapour will contain a higher percentage of benzene.

(d) The vapour will contain higher percentage of toluene.

Explaination:

- (c) It is because benzene has high vapour pressure, it will form more vapours as compared to toluene.
- 17. At 100°C, the vapour pressure of a solution of 6.5 g of solute in 100 g of water is 732 mm. If K_b is 0.52 K/m, the boiling point of solution will be (a) 102°C (b) 103°C (c) 101 °C (d) 100°C

Explaination:

(c)
$$\frac{P_A^{\circ} - P_A}{P_A^{\circ}} = x_B$$

$$\Rightarrow \frac{760 - 732}{760} = x_B$$

$$x_B = \frac{7}{190}$$

$$\Rightarrow \qquad x_B = \frac{m}{m + \frac{1000}{M_A}}$$

$$\Rightarrow \frac{7}{190} = \frac{m}{m + \frac{1000}{18}}$$

$$\Rightarrow 7m + \frac{7000}{18} = 190 m$$

$$\Rightarrow \qquad 183m = \frac{7000}{18}$$

$$\Rightarrow \qquad m = \frac{7000}{3294}$$

$$\Rightarrow \Delta T_b = K_b \times m = 0.52 \times \frac{7000}{3294} = 1.06$$
B.Pt = 100 + 1.06 = 101°C

18. Which of the following is incorrect for an ideal solution?

(a) $\Delta H_{mix} = 0$ (b) $\Delta V_{mix} = 0$ (c) $\Delta P = P_{obs} - P_{calculated} = 0$ (d) $\Delta G_{mix} = 0$

Explaination:

(d) ΔG cannot be equal to zero because mixing does not lead to equilibrium.

19. If molality of dilute solution is doubled, the value of molal depression constant ($K_{\rm f}$) will be

(a) halved (b) tripled (c) unchanged (d) doubled

Explaination:

(c) K_f does not depend upon 'mMt depends upon nature of solvent.

20. The temperature at which 10% aqueous solution of (W/V) of glucose will show the osmotic pressure of 16.4 atom is (R = 0.082 L atom K⁻¹ mol⁻¹) (a) 360°C (b) 180 K (c) 300 K (d) 360 K

Explaination:

(d)
$$\pi V = nRT$$

$$16.4 \times 0.1 = \frac{10}{180} \times 0.082 \times T$$
$$T = \frac{18 \times 16.4 \times 0.1}{0.082} = 360$$

21. Which has the highest freezing point?

```
(a) 1 M glucose (b) 1 \text{ M NaCl} (c) 1 \text{ M CaCl}_2 (d) 1 \text{ M AlF}_3
```

ĸ

Explaination:

(a) 1 M glucose solution has highest freezing point because it has lowest ΔT_f because i = 1.

22. Which of the following is correct?

a) KJJ increases with increase in temperature (KH is Henry's law constant).

(b) Solubility of gas in liquid decreases with increases in temperature.

- (c) KJJ decreases with increase in temperature.
- (d) Solubility of gas in liquid increases with increase in temperature.

Explaination:

(a) and (b) are correct $p_{gas} = K_H \times x_{gas}$

 $K_{\rm H}$ increases with increase in temperature, decreases, i.e., solubility of gas in liquid decreases with increase in temperature.